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A study is presented of internal auto-parametric instabilities in the free
non-linear vibrations of a cylindrical shell, focussed on two modes (a concertina
mode and a chequerboard mode) whose non-linear interaction breaks the in}out
symmetry of the linear vibration theory: the two mode interaction leads to
preferred vibration patterns with larger de#ection inwards than outwards, and at
internal resonance, signi"cant energy transfer occurs between the modes.
A Rayleigh}Ritz discretization of the von KaH rmaH n}Donnell equations leads to the
Hamiltonian and transformation into action-angle co-ordinates followed by
averaging provides readily a geometric description of the modal interaction. It was
established that the interaction should be most pronounced when there are slightly
less than 2JN square chequerboard panels circumferentially, where N is the ratio
of shell radius to thickness. ( 1999 Academic Press
1. INTRODUCTION

Internal auto-parametric instabilities of thin vibrating shells can generate
signi"cant energy transfer between modes in a manner that cannot be described by
linear vibration theory. In this paper, the simplest example of the phenomenon is
considered, namely the unforced, undamped vibrations of an in"nitely-long
circular}cylindrical shell. By applying methods of Hamiltonian dynamical systems
theory a simple geometric description is obtained of the interaction phenomenon
which can form the basis for further, more pragmatic analysis.

Fundamental studies of cylindrical shells have played a central role in the
understanding of static buckling of shells (see e.g. references [1}9]), and such a shell
is adopted here as an archetype for the development of the non-linear dynamical
-Former member of the Centre for Nonlinear Dynamics and its Applications, University College
ondon.
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analyses. Original works on non-linear shell vibrations by Evensen [10] and
Volmir [11], for example, have more recently been supplemented by modal
coupling analyses of Nayfeh and Balachandran [12], Liu [13], Bogdanovich [14],
Thompson and de Souza [15], and Popov et al. [16]. In this paper, however, rather
than employing the traditional approximation methods of engineering
mathematics the geometrical interpretation of the averaging method of
Hamiltonian dynamical systems theory is applied. Following the pioneering and
rigorous theoretical advances of Kolmogorov, Arnol'd and Moser this method has
been widely applied in the physics literature, particularly by Chirikov [17].
Although a number of celebrated theorems have been proven involving averaging,
some fundamental proofs on the general validity of the method have yet to be
supplied. Rather than concentrating upon the rigour of the mathematics, we follow
instead the physicists and place our emphasis upon the elegant description of the
dynamics that can be obtained.

Following non-linear shell theory, we start with the non-linear von
KaH rmaH n}Donnell equations for a cylindrical shell and make a Rayleigh}Ritz
discretization to the selected modes of transverse de#ection. The in-plane
equilibrium and compatibility conditions are then exactly satis"ed by use of the
Airy stress function. Two modes are selected that are known to have signi"cant
static post-buckling interaction under axial compression. These two modes can
combine to break the in}out symmetry of the linear theory, i.e., they give larger
de#ection inwards than outwards. In the dynamical setting this leads to preferred
vibration patterns with larger de#ection inwards than outwards. The two modes
have concertina (Figure 1(a)) and chequerboard (Figure 1(b)) forms, and the
energetically favourable manner in which they can combine is illustrated in the
analysis.
Figure 1. The two vibration modes: (a) concertina; (b) chequerboard.
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Hamilton's equations describing the linearized equations are, of course,
integrable. By averaging the Hamiltonian at near-resonance conditions another
integrable system is obtained, describing approximately the non-linear motions.
The "nal results of this analysis are identical with those of more algebraic
approaches of approximation theory, such as the slow-#uctuation method of
Augusteijn, Breitenberger and Mueller [18}20], itself a variant of the method of
&&slowly varying amplitude and phase''.

By using our approach, all the non-linear dynamic phenomena that are of
practical signi"cance are described: the so-called &&dynamic instability regions'',
the local bifurcation structure and the amplitudes of signi"cant orbits are all
readily captured. If desired, complete solution by quadrature for the general,
quasi-periodic motions using Jacobian elliptic functions is also possible, as with the
more traditional approaches. This more modern description, however, is better
placed for future development to describe either the minutiae of chaotic
interactions present even in the two-mode free-vibration case, or the complex
many-mode interactions in the forced, damped case.

A strong analogy is demonstrated between the modal interaction of this shell and
the interaction between the vertical and pendulum modes of a simple spring
pendulum, whose internal resonance phenomena have been widely studied (see, e.g.,
references [21}23]). The concertina mode is analogous to vertical oscillations and
the chequerboard mode to pendulum-like motions, and in the following we shall
therefore look in particular at the loss of stability of pure concertina motions.
However, this analogy is far from obvious and it is a result of the rigorous analysis
presented.

2. THE SHELL MODEL

2.1 VON KAD RMAD N}DONNELL EQUATIONS FOR A CYLINDRICAL SHELL

We consider here the free oscillations of an in"nitely long circular}cylindrical
shell, looking at the interaction between two spatially periodic modes of vibration.
We use a formulation similar to that of one earlier work on the #exural oscillations
of cylindrical shells that are parametrically excited by axial forcing [16].

The non-linear free vibrations of a thin cylindrical shell are described by a system
of two coupled partial di!erential equations in the form
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Here, x is the axial length co-ordinate, y the circumferential length co-ordinate,
t the time, R the radius of the cylinder, h the shell thickness, w the normal
displacement (positive inwards), U the in-plane (Airy) stress function, and D2 is the
biharmonic operator. The material is elastic and isotropic: E is Young's modulus,
l Poisson's ratio, o the mass density, and D"Eh3/12(1!l2 ) is the bending
sti!ness of the shell.

These governing PDEs are of quasi-linear hyperbolic type. The system was
introduced by von KaH rmaH n in 1910 for plates, i.e., without the terms depending on
the radius R. Subsequently, in 1933, Donnell suggested (1) and (2) for shallow shell
problems: they are adequate for the periodic modes of the cylinder considered here.
Notice that although we later use an energy approach, we shall need equation (2) to
derive the in-plane stresses in terms of the assumed radial displacement w(x, y, t).

2.2. RAYLEIGH}RITZ DISCRETIZATION PROCEDURE

There are several methods for approximating PDEs by "nite-dimensional
systems of ODEs such as the Rayleigh}Ritz method, Galerkin projection, "nite
di!erences, "nite and boundary element methods. In this paper we adopt the
former.

Initially, we consider lateral de#ections w of the form [24]

w(x, y, t)"
=
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k/0

=
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R B (3)

before specializing this to the two-mode case with two carefully chosen modes
which together give a spatially periodic pattern of axial wavelength 2¸.

The total potential energy < of the shell is, in this case, the sum of the strain
energies ;

s
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can be written as
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where * is the Laplace operator, while the kinetic energy of an oscillation is (by this
shell theory)
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Substituting the assumed form of the lateral de#ections (3) into the right-hand
side of equation (2) one may solve for the stress-function ' as a particular solution
'

par
. Expressing ' in terms of q

i
(t) (i"0, 1, 2,2), one may then evaluate the total

energy using integrals (4)}(6). One can usefully perform all of these calculations by
means of general computer algebra routines.
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2.3. ENERGY FUNCTIONS FOR TWO INTERACTING MODES

Specializing to the two-mode case, we adopt the approximation function

w(x, y, t)"q
1
(t)h cosA

nx
¸ B cosA

ny
R B#q

2
(t)h cosA

2nx
¸ B. (7)

These two modes are known to have an important non-linear interaction in the
post-buckling of axially compressed cylinders [7]. The former is the chequerboard
mode with 2n panels circumferentially and 2 panels axially in a wavelength 2¸; see
Figure 1(b) for n"5. The latter is the concertina mode with axial wavelength ¸; see
Figure 1(a). The wavelengths and spatial phases are such that along alternate hoops
of maximum amplitude of the concertina mode the chequerboard mode has
alternately maximum or zero amplitude. Taken together the two modes can break
the in}out symmetry exhibited by each individually. This is illustrated in Figure 2
for mode coupling with two di!erent values of the total potential energy. This
asymmetry is discernible in the total potential energy function, see Figure 3(a), of
the non-linear shell theory. In the subsequent analysis this manifests itself in the
form of vibrations having greater amplitudes inwards than outwards.

The corresponding potential energy function can be written as
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The above "nite expansion for the potential function is exact within the basic
shallow-shell theory employed, the coe$cients being given by
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Figure 2. Mode shapes for two di!erent values of the total potential energy function: (a) state A;
(b) state B in Figure 3.



Figure 3. Potential energy contours for the two degree-of-freedom model: (a) the complete
non-linear function < (q
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); (b) the same function truncated to cubic terms.
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the latter being the aspect ratio of the panels of the chequerboard mode.
The kinetic energy is
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2.4. LINEAR FREQUENCIES AND INTERNAL RESONANCE

Each term in the series (3) is an eigenfunction of the linearized shell equations.
The corresponding eigenvalues are
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where S"knR/¸ is a non-dimensional measure of (the reciprocal of ) the axial
wavelength 2¸/k (and the chequerboard panel aspect ratio K"n/S).

2.5. COUPLED LOW-ENERGY DEFORMATIONS BREAKING IN}OUT SYMMETRY

Typical potential energy contours of the complete non-linear function < (q
1
, q

2
)

are shown in Figure 3. Notice that the shell can minimize its potential energy by
deforming along the dashed valley #oor along which q

2
varies parabolically with

q
1
. In this energetically favourable valley, the modes combine to give a shape that

has greater inwards than outwards amplitude as illustrated in Figure 4. The curves



Figure 4. Energetically favourable and unfavourable shapes with equal q
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but reversed q
2
,

corresponding to points A and B in Figure 3 at y"0: (a) q
1
"1)0 and q

2
"0)3 at A; (b) q
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"!0)3 at B.
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in the second column in Figure 4 show the possible mode shapes separated by a half
a period in time. The corresponding mode shapes are shown in Figure 2.

We shall see later that the employed perturbation method only makes use of the
cubic energy terms. With only the cubic terms, the potential energy function has the
form of Figure 3(b). In the vicinity of the trivial equilibrium solution the two
pictures are of course in close aggreement. For absolute values of the generalized
displacements in the "rst mode q

1
up to values equal to the thickness of the shell,

q
1
"1, the potential energy contours are essentially the same. Notice, however, the

invalid saddle solutions that are generated by the truncation to the cubic terms. The
perturbation analysis that follows is therefore only valid for amplitudes below the
region of these saddles.

3. THE DYNAMICS

3.1. THE HAMILTONIAN

Upon writing the momenta p
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where u
1
,u

(1,n)
and u

2
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are the natural frequencies of the chequerboard

and concertina modes, respectively, as given by equation (11). The function
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) contains the non-linear coupling terms:
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Hamilton's equations can be readily obtained from the Hamiltonian function as
usual, giving the time-derivatives (p5 , q5 ) as non-linear functions of the conjugate
co-ordinates q and momenta p. We do not state these equations here, pursuing
instead a perturbation analysis. The method used is that of averaging, and we
follow the geometric interpretation of the method described by Berry [25] and
Chirikov [17].

3.2. ACTION-ANGLE CO-ORDINATES

The well-known canonical (symplectic) transformation [26] and its inverse
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transforms the original variables (p, q) into action-angle co-ordinates (I, h). The
actions I
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and angles h
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are expressed in terms of amplitudes A
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For the linear system, equations (17) and (18) are the normal modes of vibration,
but for the non-linear system the amplitudes A

i
and phases b

i
are no longer

constant in time.
After applying the canonical transformation (14), the Hamiltonian (12) becomes
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Upon expressing the "nal terms (which are functions of the h's) as a Fourier series,
the Hamiltonian may be written as
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where H
0
,I .x is the Hamiltonian function of the linear system and Mm
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N is an

integer lattice. (Here and in what follows the vector notations I"(I
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The points in the corresponding integer lattice are shown in Figure 5(a).
For a given shell, the linear natural frequencies are constants, written as the

vector x. For internal resonance, one seeks an integer vector ma from the lattice
Mm

j
N that is almost orthogonal to x, i.e.,

ma . x"e, DeD@EuE. (21)

This is illustrated in Figure 5(a). Since the elements of u are naturally positive, the
nearly orthogonal vector m

a
must lie in the upper-left or lower-right quadrants. For

our lattice, we have the possible (two-frequency) resonance conditions

m
a
"$(2,!1)T or $(1,!1)T. (22)

We shall investigate the former, assuming that the shell properties are such that

2u
1
!u

2
"e. (23)

3.3. AVERAGING

The Hamiltonian is now averaged over a certain time-scale to obtain an
approximate Hamiltonian which should describe the motions over this time-scale.
The time-scale for averaging is chosen to be su$ciently long that the
high-frequency non-resonant terms of (frequency m

j
. x ( jOa)) average to close to
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zero, but short enough that the slowly varying actions I, phases b and the term e*et
may be assumed constant over the averaging interval.

Up to a constant, this gives the averaged Hamiltonian

HM "I . x#HM
1

(24)
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In our system, the function HM
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2
) term.

All further analysis gives only an approximation to the true system dynamics.
However, the averaged Hamiltonian HM describes exactly the motions of a &&nearby''
system. It is this nearby system that we proceed to study, and this nearby system is
integrable.

As usual in Hamiltonian dynamical systems theory, before attempting to solve
any equation, we proceed to make transformations to obtain the simplest possible
statement of the problem. We now choose a rotated co-ordinate system with an
action I

a
parallel to m

a
, and the remaining action I

b
in a direction m

b
perpendicular

to this (see Figure 5(b)).
We have chosen to study the resonance associated with m

a
"(2,!1)T, and now

choose the orthogonal direction m
b
"(1, 2)T. (If more than two modes were

involved in this resonance, we would need to select a mutually orthogonal set of
such vectors Mm

b
N, each orthogonal to m

a
).

A little care is needed with the rotation to the new co-ordinates, since m
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we obtain the Hamiltonian in terms of the rotated co-ordinates (J, /) as
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a
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(That this transformation is canonical, with J, / conjugate, can be shown by
using the standard theory of generating functions (see, e.g., reference [27]), with
generating functions S
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(Q, h)"Q .Bh and S
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and hence the action I
b
is a constant of the motion. Along with the original constant

HM one now has enough constants to integrate the (approximate) system.
Geometrically, the result IQ

b
"m

b
. I0 /Dm

b
D2"0 states that I0 is perpendicular to (all

the) m
b
and is thus parallel to m

a
(see Figure 5(b)). From any given initial condition I,

it follows that the action of all subsequent motion lie along the line through I-space
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parallel to m
a
. Since the components of I are necessarily positive, all subsequent

actions lie on the segment on this line passing through the positive quadrant.
The Hamiltonian of the linear system is thus

H
0
"I .x"J .X"I

a
e#I

b
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b
, (32)

of which the "nal term is a constant.

3.3.1. Perfect resonance

At the conditions of perfect resonance (e"0), one obtains from equation (32)
that H

0
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b
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b
which is constant. The Hamiltonian H

0
of the linear system is thus

a conserved quantity of the (approximate) non-linear system at the conditions of
perfect resonance. Since HM "H
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results state that, in I-space, any line parallel to m
a
is a line of constant H

0
.

Since I
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is constant, its value is determined once and for all by the initial
conditions. Evolution in I-space proceeds along the direction parallel to m

a
,

parameterized by the single co-ordinate I
a
.

The function HM
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The trajectories of this system "ll the (I
a
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a
) plane. These trajectories are level sets

of the function HM
1ma

(I
a
)cos h

a
, easily obtained numerically by plotting contours

over the (I
a
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a
) plane, as illustrated in Figure 6.
Figure 6. The level sets of the function HM
1ma

(I
a
) cos h

a
over the sloping (I

a
, h

a
) plane are the

trajectories at resonance.
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Note that the function HM
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(I
a
)"bI
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2
is linearly sloping at the I

1
"0 end,

but has in"nite slope at the I
2
"0 end, due to the square root.

A general contour on the (I
a
, h

a
) plane is a closed loop, and corresponds to

a quasi-periodic motion. Continued application of the Hamiltonian systems
methodology would now have transformed the system yet again, by using another
generating function, into a pair of action-angle co-ordinates describing the motion
around these closed loops on the (I

a
, h

a
) plane, with the action constant on each

trajectory. We shall not proceed with this, as the system of equations are already
simple enough to integrate explicitly.

Since
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The denominator on the left is the square root of a cubic polynomial in I
a

and
integration is straightforward, by using Jacobian elliptic functions. However, rather
than presenting lengthy algebraic expressions for the general quasi-periodic
motions [20], it is more instructive to extract a qualitative understanding from the
geometric description that we have developed, such that a number of important
quantitative results can then be achieved rather painlessly.
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1
, h

1
), by

using equations (17) and (18).
When p

2
"0, (with q

2
'0) equation (18) gives h

2
"0 thus on the PoincareH

section, h
1
"h

a
/2. There is thus a one-to-two mapping of the (I

a
, h

a
) plane onto the

(q
1
, !p

1
/m

1
u

1
) plane. The upper horizontal edge of the (I

a
, h

a
) plane (line AB of

Figures 6 and 7(a)), having I
1
"0 (and thus A

1
"0) maps to the origin of the (q

1
,

!p
1
/m

1
u

1
) plane. The lower horizontal edge (line DC, Figures 6 and 7(a)) has

I
2
"0, thus HM "H

0
"I

1
u

1
. This lower horizontal edge thus maps to the circle of

radius A
1
"J2I

1
/m

1
u

1
"J2HM /m

1
u2

1
. If the system is started from initial condi-

tions (q
1
, q

2
, p

1
, p

2
)"(0, q0

2
, 0, 0), then HM "1

2
m

2
u2

2
q02

2
. The pure q

2
motion is

unstable, and the system will fall o! down one of the unstable manifolds emanating
from the origin at 453, experiencing a maximum q

1
amplitude of A

1,.!9
"2Jm

2
/m

1
q0
2
"2J2q0

2
at the outermost circle.

The points E and F on the (I
a
, h

a
) plane correspond to periodic orbits. These lie

on the lines h
a
"0, n and correspond to the condition where dHM

1ma
/dI

a
"0. Since

HM
1ma

"bI
1
JI

2
with I

1
"2I

a
#I

b
, I

2
"!I

a
#2I

b
, elementary algebra rapidly



Figure 7. (a). The trajectories on the (I
a
, h

a
) plane at resonance; (b) the corresponding trajectories

on the (q
1
,!p

1
/m

1
u

1
) PoincareH plane.
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gives 6I
a
"7I

b
, and I

1
"4I

2
. Using the approximation that for small vibrations,

HM +H
0
"I

1
u

1
#I

2
u

2
leads to estimates of the periodic orbits as q

1
"A

1
cosu

1
t,

q
2
"1

4
A

1
cos 2u

1
t, with the constant amplitude A

1
"J2

3
A

1,.!9
(i.e., with
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a maximum q
1

amplitude equal to a fraction 0.82 of its maximum homoclinic
amplitude).

Recalling the analogy with the oscillations of a spring pendulum indicates that
the periodic orbits E and F correspond to the familiar, periodic &&cup'' and &&cap''
motions of the pendulum, which involve both vertical and horizontal oscillations.
Note, however, that the di!erence in modal masses for the shell vibrations leads to
a ratio of chequerboard to concertina amplitudes of 4, rather than the ratio of 2 for
the horizontal to vertical amplitudes in the spring pendulum.

3.3.2. Near resonance

For the near-resonance case eO0, we now have H
0
"I

a
e#I

b
u

b
but

HM
1
"HM

1ma
(I) cos h

a
still. Since the angle(s) h

b
are still cyclic, then IQ

b
"0 again, thus

the I
b
s are again conserved quantities, and there are enough constants of the

motion to integrate the system. Since H
0
"I

a
e#I

b
u

b
, of which only the last term

is constant, the Hamiltonian of the linear system is not a conserved quantity of the
(approximate) non-linear system away from resonance. However, since I

b
u

b
and

HM are constants, the function eI
a
#HM

1ma
(I) cos h

a
is a constant. We can thus

examine the dynamics by considering level sets of this function over the (I
a
, h

a
)

plane, (or, alternatively, transformed to the (q
1
, !p

1
/m

1
u

1
) PoincareH plane again).

The e!ect of the additive linear terms eI
a

on the orbit structure is immediately
evident. The stationary points E and F on the h

a
"0 and n axes move. One moves

towards the line AB (where I
1
"0) and the other towards the line CD (where

I
2
"0), the direction of movement depending upon the sign of e. This is illustrated

in Figure 8 for e(0. For su$ciently large DeD, one of the stationary points can
collide with the line AB. This occurs when

De D"dHM
1ma

(I
a
)/dI

a
D
I1/0

(37)

i.e., when the slope of the function HM
1ma

at the left-hand end is cancelled by the slope
e of the additive linear term. Since

HM
1ma

"bI
1
JI

2
"b(2I

a
#I

b
)J!I

a
#2I

b
, (38)

then di!erentiation with respect to I
a
at constant I

b
, evaluated at I

1
"0, gives the

bifurcation criterion:

e
bif

"2bJI
2
D
I1/0

"2bJHM /u
2
. (39)

If the system is started from the initial condition (q
1
, q

2
, p

1
, p

2
)"(0, q0

2
, 0, 0), this

criterion may be written as

q0
2
"A2!

u
2

u
1
B

2m
1
u2

1
k
112

. (40)

This criterion delineates the limits of the so-called &&dynamic instability regions'',
and we consider the extent of these in section 4.

However, before determining the stability boundaries, we shall extract the
bifurcation diagram for these instability regions by obtaining an analytical
expression for the (approximate) amplitude of the periodic orbits. The periodic



Figure 8. (a). The trajectories on the (I
a
, h

a
) plane away from perfect resonance for e(0. Note the

points E and F corresponding to periodic orbits have approached lines AB and CD respectively; (b)
the corresponding picture on the PoincareH plane for e(0.
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orbits correspond to the points of zero slope on the function I
a
e$HM

1ma
(I

a
), and are

thus given by

De D"
b
2

(!6I
a
#7I

b
)

J(!I
a
#2I

b
)
"

b
2
(!I

1
#4I

2
)

JI
2

"e
"*&
!

b
2

I
1

JI
2

+e
"*&
!

b
2

I
1
Ju

2
JHM !I

1
u

1

, (41)

where the last identity has been obtained by using the small displacement
approximation HM +H

0
"I

1
u

1
#I

2
u

2
. Approaching the bifurcation (as E or

F approaches the line AB, Figure 6) we have I
1
P0, and to leading order the action

I
1

of the periodic orbit rises linearly with e
"*&
!De D from the bifurcation point. Since

I
1
"1

2
m

1
u

1
A2

1
, the amplitude A

1
rises from the bifurcation as the square root of

e
bif

!De D, giving the expected parabolic form for a period-doubling bifurcation.
Figure 9 shows schematically the bifurcation diagram obtained by sweeping across
a dynamic instabilility region under increasing e. Note that the periodic orbit
created at the left-hand stability boundary is not destroyed at the right-hand
boundary, but continues to grow, existing outside the instability region. That it
cannot be destroyed in this direction is readily seen from the function HM

1ma
, where

no amount of linearly additive I
a
e can ever overcome the in"nite slope of the

square-root singularity at the I
2
"0 end of the (I

a
, h

a
) plane (line CD, Figure 6).

4. DYNAMIC INSTABILITY REGIONS

The concertina mode oscillation becomes unstable when its initial amplitude
q0
2

is given by equation (40). For this to occur at very small initial displacements
(q0

2
+0) requires

2!u
2
/u

1
+0. (42)
Figure 9. The bifurcation diagram through an instability region under changing detuning para-
meter e, showing the birth of the periodic orbits E and F at period-doubling bifurcations on the
stability boundary.
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Upon de"ning s"nR/¸ as the measure of axial wavelength, and using equation
(11), this leads to

AA1#
n2

s2B
2
!4BA

a2s4
3(1!l2)

!

1
(1#(n2/s2)2B+0. (43)

Instabilities at arbitrarily small initial displacements can therefore be obtained at
critical axial wavenumbers s

1
and s

2
given by

s
1
"n and s

2
"SJ3(1!l2)

a
!n2. (44)

The former is a purely geometric criterion, and corresponds to square chequer-
board panels. The second depends on shell thickness ratio and circumferential
wavenumber, and (weakly) on the material (through Poisson's ratio).

In terms of the initial hoop strain e
hoop

of the concertina mode, the boundaries of
the dynamic instability regions are given by

e
hoop

(a, l, s, n)"q0
2
h/R"2(2f

1
!f

2
)f
1

f
3
, (45)

where

f
1
(a, l, s, n)"A

a2s4
12(1!l2 )A1#

n2

s2B
2
#

1
(1#(n2/s2))2B

1@2
, (46)

f
2
(a, l, s)"A

4a2s4
3(1!l2)

#1B
1@2

, f
3
(s, n)"A1#

8
(1#(n2/s2))2B

~1
. (47,48)

For, as an example, a shell with thickness ratio a"1/400, and Poisson's ratio 0)3,
the dynamic instability region for the case with circumferential wavenumber n"10
is shown in Figure 10. The initial concertina-mode hoop strain required for
instability is thus extremely large (of the order of millistrain), except in the immedi-
ate vicinity of the two critical axial wavenumbers s

1
and s

2
(in this case, s

1
(s

2
).

For metal shells, feasible vibration strains are at most microstrain, and thus to
experience this n"10 instability, the concertina wavenumber must equal either
s
1

or s
2

to impractically high precision.
However, plotting the instability regions for all possible circumferential

wavenumbers, as in Figure 11, reveals that if the two critical axial wavenumbers
s
1

and s
2
are close, the instability region can be comparatively broad even when the

initial concertina-mode hoop strains are down at the microstrain level. This more
pronounced resonance, occurring when s

1
+s

2
, is observed when

s+n+JJ3(1!l2)/2a. (49)

For l"0)3, this gives s+n+0)91/Ja, and in Figure 11, where 1/a"400 the most
signi"cant instability occurs as expected near s+n+18. This theory therefore
predicts that this resonance is most likely to be observed when there are 1)82JN
square panels of the chequerboard mode circumferentially, where N"1/a is the
ratio of shell radius to thickness, with one chequerboard panel corresponding to
a complete wavelength of the concertina mode.



Figure 10. The instability boundary for the n"10 chequerboard mode for a shell with a"1/400,
showing two critical axial wavenumbers at which the instability occurs at arbitrarily small initial
concertina mode hoop strain.

Figure 11. The instability boundaries for all possible chequerboard modes for a shell with
thickness ratio a"1/400 and Poisson's ratio 0.3. When n+0.91J1/a+18, the two critical axial
wavenumbers are close and the=-shaped instability boundary extends over a broad range, even at
very low concertina mode hoop strain.
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5. CONCLUSIONS

We have applied methods of Hamiltonian dynamical stystems theory to a
particular instance of modal interaction in the free, undamped vibrations of a
cylindrical shell. Our primary conclusion is that the method of averaging, applied
in the manner described here, leads to an elegant description of the modal
interaction phenomenon. A qualitative geometrical picture of the underlying
dynamics emerges which lends itself readily to the extraction of important
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quantitative information, without recourse to the lengthy and ad hoc algebraic
manipulations required by other approximation methods.

In this study we looked at the possible exchange of energy between a concertina
and chequerboard mode of oscillation. Shells have many other modes of oscillation,
and a host of other interaction phenomena (chequerboard}chequerboard,
axial}chequerboard, etc.), are possible. However, for the particular modes con-
sidered here the theory predicts that signi"cant exchange of energy is most likely to
occur if the chequerboard panels are square, with 1)82JN panels circumferentially,
where N is the ratio of shell radius of thickness. The corresponding concertina
mode will have an axial wavelength equal to one chequerboard panel, and under
these conditions, initial concertina oscillations are likely to lose stability, transfer-
ring energy back and forth into the chequerboard mode oscillating at half the
concertina frequency.
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